Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig
نویسندگان
چکیده
The concertina is a magnetization pattern in elongated thin-film elements of a soft magnetic material. It is a ubiquitous domain pattern that occurs in the process of magnetization reversal in direction of the long axis of the small element. Van den Berg argued that this pattern grows out of the flux closure domains as the external field is reduced. Based on experimental observations and theory, we argue that in sufficiently elongated thin-film elements, the concertina pattern rather bifurcates from an oscillatory buckling mode. Using a reduced model derived by asymptotic analysis and investigated by numerical simulation, we quantitatively predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a weak (crystalline or induced) anisotropy.
منابع مشابه
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Improved lower and upper bounds for entanglement of formation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Immunity space generated by a non trivial genetic - antigenic relation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Method for measuring the entanglement of formation for arbitrary - dimensional pure states
متن کامل
Discrepancy of Products of Hypergraphs
Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...
متن کامل